지난 연재물 - 수학 & 통계학/[상미분방정식] 참새와 함께하는 공학수학 - ODE 편53 #4.series solution(3. Frobenius method : 정수차가 아닌 두 근) #어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 앞으로 남은 세 개의 주제에 대해서는, 이전의 의 관계를 막 외우고 확인해보고 대조할 필요 없이, 간단히 두 번 노가다!만 하면 됩니다. 훨씬 더 편하게 따라올 수 있을 거라고……쭈글예상..해봅니다…ㅎㅎ 정수가 아닌 두 근을 가지는 경우 #0. 예제 예제의 숫자가 그리 달갑.. 2015. 5. 19. #4.series solution(3. Frobenius method : 정수차 근 : log term 이 사라지는 경우) 그림 출처 #어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 네 끝나질 않죠?ㅋㅋㅋ 단원 이름부터가, ‘급수 series’ 해법이다 보니….정말 손도 많이 가고 경우도 많이 나눠져있고…..ㅠㅠ이제 복잡하고 힘든 부분은 거의 다 끝났습니다. 나머지는 힘들지 않은 노가다일 뿐이니까….ㅠㅠㅠ 두 번째 예제 #0. 예제 첫 번째 .. 2015. 5. 16. #4-series solution(3. Frobenius method : 정수차 근 : log term이 사라지지 않는 경우) 사진출처 : 이분이 바로 그 프로베니우스!#어디까지왔니?어째 위치가 더 천천히 가는 것 같은 느낌은 무시합시다 ㅎㅎㅎㅎㅎㅎ Frobenius method3-1 : 기초적인 방법3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우두 번째 예제 : 항이 지워지는 경우3-2-3. 가 정수가 아닌 두 근을 가지는 경우3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우3-3-2. 가 정수인 두 근을 가지는 경우 에 대해서 포스팅이 진행될 예정이라고 했구요, 오늘 할 것은 바로 3-2-2에 해당하는, 가 정수인 두 근을 가지는 경우에 대한 이야기 입니다. 가 정수인 두 근을 가지는 경우 (.. 2015. 4. 29. #4-series solution(3. Frobenius method : 중근) 그림출처 - 네이버 웹툰 '역전! 야매요리' #어디까지왔니? Frobenius method(1) 지난 포스팅의 마지막 내용이었죠? 의 종류에 따라 세 가지의 경우로 나누어 ODE의 두 basis를 구한다고 말했습니다. 물론, 다시 한 번 말씀드리자면! 두 근 중 하나가 쉽게 나온다면 차수축소법 reduction of order를 사용하면 되는 것이고, 이것은 가장 일반적인, ‘급수형태로 해가 나올때’, ‘정리가 되지 않을때’ 에 대한 이야기 입니다. 중근을 가지는 경우 가 정수인 두 근을 가지는 경우 (단, ) 가 정수가 아닌 두 근을 가지는 경우 이 경우에는 그냥 에 대해서도 한 번 더 계산을 해주면 됩니다! Frobenius method는 정말 익숙해 지기가 쉽지 않은 고로 ㅠㅠㅠ 문제를 푸는 과정을.. 2015. 4. 11. #4-series solution(3.Frobenius method : basic) 사진출처#어디까지왔니? 오랜만입니다! ㅋㅋ series solution의 세 번째 주제, Frobenius method에 대한 얘기를 시작해보려고 합니다. 이제까지 다뤘던, power series method 와 그 응용인 Legendre polynomial 을 다시 한 번 보고, 확실히 손에 익힌 다음 이 방법을 시작해보도록 합시다! Frobenius method 우리가 power series method 를 다룰때는, 이런 조건이 붙었던 것을 기억하실 겁니다. 이 때 가 에서 analytic 해야한다 이것의 특수한 경우로, 이 때 가 에서 analytic 해야한다. 요런 얘기까지 같이 했던 것도, 확인하러 가봅시다 ㅋㅋ 첫 번째 내용은 이미 다뤘고, 두 번째 내용을 이제 함께 다뤄보려고 합니다. Fr.. 2015. 4. 6. #4-series solution(2. Legendre's equation : 두 번째) #어디까지왔니? Legendre’s equation 저번 포스팅에서, Legendre’s equation을 잘…정리를 했습니다. 완전히 정리하기 전에, 이 형태를 기억하고 가봅시다. 처럼 표현했던 것도 기억을 되살려 보고….는 다항식이었기 때문에, 이에 대한 일반적인 표현식을 이번 포스팅에서 찾아볼거라고 했었죠!그 전에 기억하고 갈 것은…… 이전 포스팅의 마지막 부분에서 이 일 때는, 의 두번째 항 이후가 전부 으로 날아가 버리고, 은 이 곱해져있지 않으므로 끝없는 급수 형태로 남아있을 것입니다. 이 일때는, 의 두번째 항 이후가 전부 으로 날아가 버리고, 은 이 곱해져있지 않으므로 끝없는 급수 형태로 남아있을 것입니다. 이 일때는, 의 세번째 항 이후가 전부 으로 날아가 버리고, 은 가 곱해져있지 않으.. 2015. 2. 26. #4-series solution(2. Legendre's equation : 첫 번째) #어디까지왔니? 복습 지난 포스팅에서는, 급수를 사용한 풀이인 power series method 에 대해 알아보았습니다. 심하게 멘붕스러웠….죠?ㅠㅠㅠㅠ 그냥 지저분하게 급수 형태로 남아있는 예제도 풀어봤고, 급수를 정리하니 우리가 알고있는 함수꼴이 되는 경우도 있었습니다. 문제를 풀었던 기억 을 되살려보고, 기본이 기억나지 않으면 이전의 포스팅으로 가서 어떻게 풀었는지 제대로! 복습을 하고 오도록 합시다! 우리가 계속해서 보고 있는 것은 꼴의 2차 ODE를, 으로 두고 푸는 방법이었습니다. 의 점화식, 또는 값을 구하는 것이 최종 목표였고, 그를 위해 저것을 일일이…대입을..해서..ㅠㅠㅠㅠㅠ 구했던 기억이 나는군요! Legendre’s equation 오늘 다룰 것은 르장드르 방정식입니다. 기본형태는.. 2015. 2. 25. #4-series solution(1.power series method : 두 번째) 이미지 출처#어디까지왔니? Power series method (2) 저번 포스팅에서는 쉬운 한 가지 예시를 통해 Power series method를 적용해 봤습니다. 이번 포스팅에서는 그것을 이어서 두 문제를 함께 풀어보도록 할게요!는 analytic 하다는 것을 알 수 있죠? 그러니까 저번에 했던 기억을 되살려서 여기서부터 시작해봅시다! #1. 한번 미분, 두번 미분 마찬가지로, 는 달라졌다는 것 ㅠㅠ 매번 신경써야해요! #2. 치환 예전에 부렸던 꼼수를 기억해내보면… 을 로 치환 를 로 치환 이제 로 통일되었죠? #3. 대입 이제 원래의 미방에 가져다가 대입해봅시다. #4. 또 치환 그런데 여기서 이전과는 다른 문제가 생깁니다. 바로…… 똑같이 를 다시 넣고 정리를 하면… 이번에는 로 통일이 되지.. 2015. 2. 20. #4-series solution(1.power series method : 첫 번째) 이미지 출처#어디까지왔니? 안녕하세요 여러분~ 다시 돌아왔습니다. 지금까지 analytic solution을 모두 해결했습니다. 총 16개의 포스팅에 걸친… 험난하고 긴 여정이었죠?ㅋㅋㅋ 다양한 방법으로 ODE를 풀 수 있게 되셨으리라 믿어 의심치 않습니다~오늘부터는, 예고했듯 series solution으로 ODE의 해를 구하는 방법에 대해 포스팅해볼까 합니다. 이전까지 했던 것 처럼 딱 정확한 해가 떨어질 수도 있고, 아닐 수도 있습니다ㅠㅠ 복불복이죠? 슬프고 힘든…….과정이 되겠습니다…흑일단 본격적인 포스팅에 앞서, 이번 포스팅에서는 series(급수)에 대한 가장 기본적인 이야기를 해보고, 몇 가지 간단한 ODE를 함께 풀어보면서 조금씩 예열을 해보도록 해요~ 급수, series 급수가 뭔지, 한.. 2015. 2. 17. 이전 1 2 3 4 5 6 다음