미방6 #4.series solution(3. Frobenius method : reduction of order 적용하기) 그림출처 어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 나머지 두 개는, 별로 어려운 부분이 아니니 빠르게 넘어가보도록 합시다! 3-1, 3-2를 충실히 따라왔다면 할 수 있습니다. 왜냐하면 우리는 해를 하나만 구하고 나머지 하나는 Reduction of order로 구할거니까요! 정리가 되고, 중근을 가지는 경우 #0... 2015. 5. 20. #4.series solution(3. Frobenius method : 정수차가 아닌 두 근) #어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 앞으로 남은 세 개의 주제에 대해서는, 이전의 의 관계를 막 외우고 확인해보고 대조할 필요 없이, 간단히 두 번 노가다!만 하면 됩니다. 훨씬 더 편하게 따라올 수 있을 거라고……쭈글예상..해봅니다…ㅎㅎ 정수가 아닌 두 근을 가지는 경우 #0. 예제 예제의 숫자가 그리 달갑.. 2015. 5. 19. #4.series solution(3. Frobenius method : 정수차 근 : log term 이 사라지는 경우) 그림 출처 #어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 네 끝나질 않죠?ㅋㅋㅋ 단원 이름부터가, ‘급수 series’ 해법이다 보니….정말 손도 많이 가고 경우도 많이 나눠져있고…..ㅠㅠ이제 복잡하고 힘든 부분은 거의 다 끝났습니다. 나머지는 힘들지 않은 노가다일 뿐이니까….ㅠㅠㅠ 두 번째 예제 #0. 예제 첫 번째 .. 2015. 5. 16. #4-series solution(3. Frobenius method : 정수차 근 : log term이 사라지지 않는 경우) 사진출처 : 이분이 바로 그 프로베니우스!#어디까지왔니?어째 위치가 더 천천히 가는 것 같은 느낌은 무시합시다 ㅎㅎㅎㅎㅎㅎ Frobenius method3-1 : 기초적인 방법3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우두 번째 예제 : 항이 지워지는 경우3-2-3. 가 정수가 아닌 두 근을 가지는 경우3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우3-3-2. 가 정수인 두 근을 가지는 경우 에 대해서 포스팅이 진행될 예정이라고 했구요, 오늘 할 것은 바로 3-2-2에 해당하는, 가 정수인 두 근을 가지는 경우에 대한 이야기 입니다. 가 정수인 두 근을 가지는 경우 (.. 2015. 4. 29. #2-2nd order ODE(2.non-homogeneous : undetermined coefficient) #어디까지 왔니? 참새와함께하는 기초 공학수학 #2.2 - 2nd order ODE(2. non-homogeneous -1)잠깐! 왼쪽 수식이 깨져보인다면 클릭! non-homogeneous 2nd order ODE 오랜만입니다! 지난 시간에 알아보았던, 2nd order ODE가 homogeneous 한 경우에 대해 복습을 그동안 열심히 했다고 믿어요! 아닌가요? 이번 포스팅에서는, non-homogeneous 한 경우에 대해 알아보도록 합니다. 기본 염두에 두고 있을 것은, homogeneous 한 해를 구해야한다는 것입니다. 예를 들어, 아래와 같은 2nd order ODE 가 있다고 합시다. 물론 이 방정식을 만족하는 해(라고 부릅시다)를 구해야합니다만, 그 전에 생각해야 하는 것은 저 식의 우변.. 2015. 1. 4. #1-1st order ODE(1.Separating variables) 잠깐! dydx $ \frac {dy}{dx} $ 왼쪽 수식이 깨져 보인다면 클릭! 이미지 출처 # 어디까지 왔니? # 변수야 놀자! 네 그럼 본격적인 미분방정식 풀이를 시작해 봅시다! 미분방정식을 줄여서 미방이라고 앞으로 부를건데요, 미방은 변수의 개수에 따라 ODE, PDE의 두 가지로 나눌 수 있습니다. ODE(Ordinary Differential Equation)는 어떤 함수를 하나의 변수만으로 미분하는 미방을 말하고, PDE(Partial Differential Equation)는 어떤 함수를 여러개의 변수로 미분하는 미방을 말합니다. 예를 들면 아래와 같겠죠? ODE의 예 PDE의 예 앞으로 계속 ODE, PDE라고 쓸 거고, 미방교재에서도 많이 쓰이는 말이니까 용어는 머릿속에 넣어두는게 좋.. 2014. 10. 30. 이전 1 다음