본문 바로가기

공학수학17

#4.series solution(3. Frobenius method : reduction of order 적용하기) 그림출처 어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 나머지 두 개는, 별로 어려운 부분이 아니니 빠르게 넘어가보도록 합시다! 3-1, 3-2를 충실히 따라왔다면 할 수 있습니다. 왜냐하면 우리는 해를 하나만 구하고 나머지 하나는 Reduction of order로 구할거니까요! 정리가 되고, 중근을 가지는 경우 #0... 2015. 5. 20.
#4.series solution(3. Frobenius method : 정수차가 아닌 두 근) #어디까지왔니? Frobenius method 3-1 : 기초적인 방법 3-2 : 문제 풀이(정리가 되지 않는 경우) 3-2-1. 중근을 가지는 경우 3-2-2. 가 정수인 두 근을 가지는 경우 첫 번째 예제 : 항이 남아있는 경우 두 번째 예제 : 항이 지워지는 경우 3-2-3. 가 정수가 아닌 두 근을 가지는 경우 3-3 : 문제 풀이(정리가 되는 경우) 3-3-1. 중근을 가지는 경우 3-3-2. 가 정수인 두 근을 가지는 경우 앞으로 남은 세 개의 주제에 대해서는, 이전의 의 관계를 막 외우고 확인해보고 대조할 필요 없이, 간단히 두 번 노가다!만 하면 됩니다. 훨씬 더 편하게 따라올 수 있을 거라고……쭈글예상..해봅니다…ㅎㅎ 정수가 아닌 두 근을 가지는 경우 #0. 예제 예제의 숫자가 그리 달갑.. 2015. 5. 19.
#4-series solution(3.Frobenius method : basic) 사진출처#어디까지왔니? 오랜만입니다! ㅋㅋ series solution의 세 번째 주제, Frobenius method에 대한 얘기를 시작해보려고 합니다. 이제까지 다뤘던, power series method 와 그 응용인 Legendre polynomial 을 다시 한 번 보고, 확실히 손에 익힌 다음 이 방법을 시작해보도록 합시다! Frobenius method 우리가 power series method 를 다룰때는, 이런 조건이 붙었던 것을 기억하실 겁니다. 이 때 가 에서 analytic 해야한다 이것의 특수한 경우로, 이 때 가 에서 analytic 해야한다. 요런 얘기까지 같이 했던 것도, 확인하러 가봅시다 ㅋㅋ 첫 번째 내용은 이미 다뤘고, 두 번째 내용을 이제 함께 다뤄보려고 합니다. Fr.. 2015. 4. 6.
#4-series solution(2. Legendre's equation : 첫 번째) #어디까지왔니? 복습 지난 포스팅에서는, 급수를 사용한 풀이인 power series method 에 대해 알아보았습니다. 심하게 멘붕스러웠….죠?ㅠㅠㅠㅠ 그냥 지저분하게 급수 형태로 남아있는 예제도 풀어봤고, 급수를 정리하니 우리가 알고있는 함수꼴이 되는 경우도 있었습니다. 문제를 풀었던 기억 을 되살려보고, 기본이 기억나지 않으면 이전의 포스팅으로 가서 어떻게 풀었는지 제대로! 복습을 하고 오도록 합시다! 우리가 계속해서 보고 있는 것은 꼴의 2차 ODE를, 으로 두고 푸는 방법이었습니다. 의 점화식, 또는 값을 구하는 것이 최종 목표였고, 그를 위해 저것을 일일이…대입을..해서..ㅠㅠㅠㅠㅠ 구했던 기억이 나는군요! Legendre’s equation 오늘 다룰 것은 르장드르 방정식입니다. 기본형태는.. 2015. 2. 25.
#4-series solution(1.power series method : 두 번째) 이미지 출처#어디까지왔니? Power series method (2) 저번 포스팅에서는 쉬운 한 가지 예시를 통해 Power series method를 적용해 봤습니다. 이번 포스팅에서는 그것을 이어서 두 문제를 함께 풀어보도록 할게요!는 analytic 하다는 것을 알 수 있죠? 그러니까 저번에 했던 기억을 되살려서 여기서부터 시작해봅시다! #1. 한번 미분, 두번 미분 마찬가지로, 는 달라졌다는 것 ㅠㅠ 매번 신경써야해요! #2. 치환 예전에 부렸던 꼼수를 기억해내보면… 을 로 치환 를 로 치환 이제 로 통일되었죠? #3. 대입 이제 원래의 미방에 가져다가 대입해봅시다. #4. 또 치환 그런데 여기서 이전과는 다른 문제가 생깁니다. 바로…… 똑같이 를 다시 넣고 정리를 하면… 이번에는 로 통일이 되지.. 2015. 2. 20.
#4-series solution(1.power series method : 첫 번째) 이미지 출처#어디까지왔니? 안녕하세요 여러분~ 다시 돌아왔습니다. 지금까지 analytic solution을 모두 해결했습니다. 총 16개의 포스팅에 걸친… 험난하고 긴 여정이었죠?ㅋㅋㅋ 다양한 방법으로 ODE를 풀 수 있게 되셨으리라 믿어 의심치 않습니다~오늘부터는, 예고했듯 series solution으로 ODE의 해를 구하는 방법에 대해 포스팅해볼까 합니다. 이전까지 했던 것 처럼 딱 정확한 해가 떨어질 수도 있고, 아닐 수도 있습니다ㅠㅠ 복불복이죠? 슬프고 힘든…….과정이 되겠습니다…흑일단 본격적인 포스팅에 앞서, 이번 포스팅에서는 series(급수)에 대한 가장 기본적인 이야기를 해보고, 몇 가지 간단한 ODE를 함께 풀어보면서 조금씩 예열을 해보도록 해요~ 급수, series 급수가 뭔지, 한.. 2015. 2. 17.
#2-2nd order ODE(2.non-homogeneous : undetermined coefficient) #어디까지 왔니? 참새와함께하는 기초 공학수학 #2.2 - 2nd order ODE(2. non-homogeneous -1)잠깐! 왼쪽 수식이 깨져보인다면 클릭! non-homogeneous 2nd order ODE 오랜만입니다! 지난 시간에 알아보았던, 2nd order ODE가 homogeneous 한 경우에 대해 복습을 그동안 열심히 했다고 믿어요! 아닌가요? 이번 포스팅에서는, non-homogeneous 한 경우에 대해 알아보도록 합니다. 기본 염두에 두고 있을 것은, homogeneous 한 해를 구해야한다는 것입니다. 예를 들어, 아래와 같은 2nd order ODE 가 있다고 합시다. 물론 이 방정식을 만족하는 해(라고 부릅시다)를 구해야합니다만, 그 전에 생각해야 하는 것은 저 식의 우변.. 2015. 1. 4.
#2-2nd order ODE(1.homogeneous : Euler-Cauchy) 이미지 출처#어디까지 왔니? 잠깐! 왼쪽 수식이 깨져보인다면 클릭! 2. 오일러-코시(Euler-Cauchy) 방정식 저번 포스팅에 이어, 이번시간에 살펴볼 방정식은 Euler-Cauchy 형태의 방정식입니다. 어떻게 생겼냐면… . 이렇게 생긴 미분방정식을 Euler-Cauchy 방정식이라고 하구요, 이걸 푸는데에 있어 착안한 점은 이렇습니다. 만약, 가 최고차항이 차인 다항식이고, 꼴이라면, 저 식에 대입했을 때 세 항이 모두 차로 정리가 될 거니까, 으로 묶을 수 있겠구나! ㅋㅋ 무슨말이냐구요? 저 윗식에 을 넣어보면, 니까, 이렇게 정리가 될겁니다. 근데, 인건 별 로 의미가 없는 자명해니까, 그걸 제외한 해는 여기서 구해질겁니다. 즉, 에 대한 이차 방정식이 나오게 되는 거죠. 이 것을 auxil.. 2014. 12. 25.
#2-2nd order ODE(1.homogeneous : constant coefficient) 잠깐! dydx 왼쪽 수식이 깨져보인다면 클릭! 이미지출처 #어디까지 왔니? 잠깐! 왼쪽 수식이 깨져보인다면 클릭! 2nd order ODE 2nd order ODE를 풀기 위해서는, 일단 homogeneous 한 ODE 부터 푼 다음 그 방법을 활용해서 non-homogeneous 한 ODE를 풀어나가야 합니다. 사실, 2nd order ODE 중에서도 풀 수 있는 것들이 한정되어있다보니 ㅠㅠㅠ 딱 두가지 특수한 케이스에 대해서만 살펴보게 됩니다. 1st order 와는 조금 다르죠?ㅠㅠ 그래서 포스팅도 꽤 일찍 끝날 예정입니다 이 분야는…ㅠㅠ 크게 우리가 배울 두 가지 케이스는, 1. 상수계수(상계수), constant coefficient 2. 오일러-코시, Euler-Cauchy 입니다. 각각에 .. 2014. 12. 25.